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The physical interpretation of the 
parameters measured during the tensile 
testing of materials at elevated temperatures 
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Hot tensile (or compression) testing, where the stress developed in a material is measured 
under an imposed strain rate, is often used as an alternative to conventional creep testing. 
The advantages of the hot tensile test are that its duration can be more closely controlled 
by the experimenter and also that the technique is more convenient, since high precision 
testing machines are available. These factors can be particularly important when extensive 
testing programmes of radioactive samples are involved. The main disadvantage is that the 
interpretation of results is more complex. Confusion can easily arise when attempts are 
made to extend the use of parameters which satisfactorily categorize behaviour at lower 
temperatures, into regimes where concurrent thermal recovery can occur. The present 
paper relates the parameters which are measured in hot tensile tests, to physical processes 
which occur in materials deforming by a variety of mechanisms. For cases where no 
significant structural changes occur, as in viscous or superplastic flow, analytical 
expressions are derived which relate the stresses measured in these tests to material 
constants. When deformation is controlled by recovery processes, account has to be 
taken of the structural changes which occur concurrently. A wide variety of behaviour 
may then be exhibited which depends on the initial dislocation density, the presence of 
second-phase particles and the relative values of the recovery rate parameters and the 
velocity imposed by the testing machine. Numerical examples are provided for simple 
recovery models. 

1. Introduction 
The mechanical properties of materials at elevated 
temperatures are usually measured either by using 
creep tests, where the time dependence of strain is 
recorded for a certain applied stress, or by measur- 
ing the stress which is developed in the material 
under some imposed strain rate. The interpretation 
of results from the first type of test is reasonably 
straightforward, particularly when it can be 
arranged for the stress to be maintained at a con- 
stant level during the test. The latter type of test, 
often called the hot tensile test (or compression 
test) is somewhat more difficult to interpret, 
although is often convenient to perform mainly 
because of the availability of precision testing 

machines. Such machines have been developed 
for more conventional tests at lower temperatures 
when no concurrent thermal recovery is occurring. 
If a means exists of interpreting high temperature 
data from the same equipment, then this provides 
a more convenient means of obtaining fundamental 
information. This can be particularly important 
for radioactive samples which require extensive 
shielded facilities. 

The basic differences between the two modes 
of testing may be categorized in terms of the rates 
of energy dissipation and the availability of a 
deformation mechanism. In a creep test, the 
material simply deforms by the mechanism which 
occurs at the fastest rate at the particular stress 
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level of test. Thus, in cases where structural 
changes occur, the strain rate also changes with 
time accordingly. In the hot tensile test, such 
strain rate changes are not possible since the 
specimen is forced to deform at a rate dictated by 
the crosshead velocity. As a consequence, the 
stress developed in the specimen must change 
in order for the deformation rate to match this 
velocity. 

During steady state deformation, it is clear 
that the measured rate and the applied stress in 
the creep test are equivalent to the imposed 
deformation rate and the measured steady state 
flow stress in the hot tensile test. It should be 
noted that in a "cold" tensile test, no steady state 

f l o w  stress is obtained, since work hardening 
continues up to the point of failure at the ultimate 
tensile strength (UTS). In the hot test, the steady 
state flow stress for a recovery creep mechanism 
is that level of stress where the rate of  hardening 
due to the imposed strain rate is just balanced 
by the rate of thermal softening. The apparent 
similarity between the shapes of the curves from 
hot and cold tests and the gradual nature of the 
chage in the type of behaviour between the two, 
has often led to considerable confusion in the 
interpretation of the stresses measured from this 
type of test. 

The aim of the present paper is to analyse the 
stress-time behaviour for hot tensile tests and to 
indicate the relationships between creep behaviour, 
the apparent UTS and the proof stress (PS). (The 
PS is a commonly used parameter in tensile tests. 
It is taken to be the flow stress at some con- 
veniently defined level of strain. Its value may 
be substantially less than the steady state flow 
stress for small reference strains or equal to it, if 
the strain is sufficiently high.) It should perhaps 
be emphasized that because of the convenient 
and often more rapid nature of the hot tensile 
test, it is commonly used in the manner of a 
"quality control" test. Under such conditions, 
the concept of a high temperature PS and UTS 
may be an entirely satisfactory means of providing 
reference data. This paper is concerned with the 
relationship between these parameters and 
fundamental properties of the material. Of current 
interest at Berkeley Nuclear Laboratories is the 
possibility of estimating the creep parameters of 
irradiated PE 16 tie-bar material from in-cell tensile 
tests at reactor discharge temperatures. These 
fundamental parameters are required for present 

physical model-based safety codes concerning fuel 
discharge. 

2. Stress-time behaviour 
A material will be considered which obeys a creep 
equation of the form: 

= e(u -- Oo)" (1) 

where d is the tensile creep rate under constant 
tensile stress o, a is a constant which contains 
thermodynamic, structural and material par- 
ameters, n(~>l) is the stress index and ~o~> 0 is a 
threshold value of stress below which d = O. For 
materials which deform by a mechanism which 
involves no structural changes, the creep rate does 
not depend on previous history, it depends only on 
stress. As a simple illustration, the viscous flow rate 
of a simple fluid depends only on the instantaneous 
value of pressure gradient and, for crystalline 
solids, diffusional creep corresponds to an equival- 
ent case. The structural feature which dictates 
the creep rate is the grain size, so that if this 
remains constant, the instantaneous value of stress 
is sufficient to describe the rate. Superplastic 
deformation provides a similar example. The 
salient structural feature is again the grain size so 
once again, if this stays constant, the instantaneous 
value of stress dictates the rate. 

In recovery creep, where strain hardening and 
thermal recovery act in conjunction, an equation 
of the type shown above is often used to describe 
the steady state creep rate. The equation only has 
Mevance when the two processes, hardening and 
recovery, operate at matching rates. As a conse- 
quence, serious errors are possible if predictions of 
behaviour during stress transients are attempted, 
using empirical equations obtained under steady 
state conditions. It is important to bear in mind 
this distinction between these two types of flow 
behaviour. Both can be represented by the 
relationship of Equation 1, but a fundamental 
difference lies in the interpretation of behaviour 
during stress transients. 

2.1. Newtonian viscous behaviour 
The testing apparatus will be assumed to be a 
constant velocity device which drives an elastic 
connection to the specimen. This elastic connection 
usually consists of the beam of the testing machine 
and the pull-rods. 

It is clear that the rate at which the stress 
builds up in the specimen (da/dt) is equal to the 
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difference between the rate of  increase of  elastic 
stress due to the deflection and the rate of  decay 
due to plastic creep. The governing differential 
equation is: 

dt = --@- tK + I/EJ dt 

where K is the elastic constant of  the connection, 
defined here as the deflection per unit stress on 
the specimen, l is the gauge length, E the elastic 
constant of  the material and V (= dx/dt) the cross- 
head velocity. The equation is now solved for the 
case of a Newtonian solid. 

In a Newtonian solid, the creep rate varies 
linearly with applied stress (o0 = 0 and n = 1 in 
Equation 1). For crystalline solids this may corre- 
spond to diffusional creep [ 1 ] with no accompany- 
ing grain growth or other transient component. 
The creep constant is then a = al  = 10 ~2D/d2kT 
for lattice diffusion control, where D is the 
diffusion coefficient, g2 the atomic volume, d the 
grain size, k is Boltmann's constant the T the tem- 
perature in Kelvin. For grain-boundary diffusion 
control a = a2 = 50 ~2wDg/dakT, where co is the 
boundary width and Dg the boundary diffusion 
coefficient. Substitution of  4 = ax into Equation 
2 and integrating with the conditions that e = 0 at 
t = 0 gives the variation of  stress with time to be: 

( o#11 
a = ~-/ - exp K + liE]J" (3) 

At short times, the expansion exp x ~ 1 + x 
may be used to give the initial form of the o, t 
curve. That is o = Vt/(K + l/E), so that a linear 
elastic variation of  stress with time will be 
observed. The curve decays exponentially to the 
steady state flow stress at long times. This is, when 
~=-Vial. Clearly the creep constant can be 
obtained directly from this relationship. 

Often, the proof stress provides a more con- 
venient parameter to determine experimentally. 
The relationship between PS and the steady state 
flow stress (or apparent UTS - denoted "UTS") 
can be obtained by considering the form of the 
plastic strain-time relationship, From Equations 1 
and 3 : 

de V(  sit t 
d t  = o~o = 7 1 - - e x p  K-+-7/E}" (4) 

Integration of this equation, again noting that 
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Figure 1 Variation of stress and strain with time for a 
Newtonian viscous material tested at constant crosshead 
velocity. Parameters are defined in the text. 

e = 0 at t = 0 gives the strain-time relationship 
as follows: 

V[ K+I/E(  alt ) ] .  
e = ) t a-l 1 - -exp  K+-l/E (5) 

Note that at long times: r( + I/E l 
e = 7 t a /  / (6) 

and in the case of a stiff machine where K = 0, 
then: 

e = -- . (7) 

The relationships between the various parameters 
are shown in schematic form in Fig. 1. 

In order to determine an analytical relationship 
for the proof stress, it is required to obtain the 
time at which a certain strain is reached and then 
substitute for e in Equation 3. To a sufficient level 
of  accuracy, the exponential term in Equation 5 
can be expanded in the form exp x = 1 + x + x2/2 
which gives the time to reach a strain e* as 

, ~  [ 2 ( / ( +  liE)e, l 1/2 

and substituting for t* in Equation 3 gives the 
proof  stress: 

~ s  = V(K + lIE)! } (9) 
Since VIal is the steady state flow stress, this 
equation gives the PS/"UTS" ratio directly. 



2.2. Nonlinear creep behaviour for 
constant structure 

2.2. 1. Superplast ic  behav iour  
Under conditions of ultra-fine grain size and at 
intermediate stress levels, materials often creep in 
such a way that the rate is proportional to the 
square of  the stress. Such behaviour is termed 
superplastic. The main structural feature which 
dictates the mechanical response is the grain size. 
I f  this is constant during test then an analysis can 
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be performed similar to that in the previous 0.01 v t / l  . 0.;2 0.03 
section. Substitution of d = a a  2 into Equation 2 12 I 
followed by integration, gives the s t ress- t ime 

1.0 
dependence. [ V \  u2 Vt l 1/2 

o = [~.7 ) t a n h [ ~ ( V ) ]  ( 1 0 ) !  0.8 

where (V/od) u2 - "UTS"  and a = c% is the creep gEL0"6[ [ 

constant for superplastic flow. The s t ra in- t ime 0.4~ / 
dependence is given by: 

Vt K 47 lie ~ [t 1 / 2  [ Vt loll11/2] 0.2 1 2 
e -  l } ~-~] t a n h [ K - - ~ t - V )  ]" 

1 I 

(11) 0.01 0.0Z o03 
Normolized time, v~]l " ~  

2,2,2, P o w e r  l a w  c r e e p  Figure 2 Variation of stress and strain with time for hypo- 
Diffusional creep and superplastic deformation thetical materials which have different stress exponent n 
can, in principle, proceed with no requirement for and show no strain hardening. 
significant structural changes. The processes 
depend on diffusional fluxes between grain bound- of  errors which are likely to arise by the incorrect 
aries and on boundary sIiding, so that in the use of  the steady state equation, namely during 
absence of  grain coarsening, the requirements of  stress transients. 
the previous analyses can be met.  For dislocation For power law behaviour (~ o~ a n) when n > 2, 
recovery creep, however, it is the mean dislocation no simple analytical solution of Equation 2 is 
spacing which characterizes the rate of  defer- possible and so a finite difference calculation was 
marion, Thus, unlike the previous cases where the performed. This involved the calculation of the 
characteristic dimension ( t h e  grain s ize)remains elastic stress increase alter a certain crosshead 
unchanged, the dislocation density can now vary deflection, then subtracting the stress relaxation 
in response to the applied stress (or strain rate), due to the creep which occurs in the elapsed time. 
As a consequence, the condition of  constant struc- As the calculation progresses, the new value of the 
ture during test is no longer valid. Nevertheless it stress is retained for the next step. The results of 
is instructive to construct hypothetical curves such a calculation for various n values are shown 
assuming that the power law equation for recovery in Fig. 2. In the calculation, the values of  the creep 
creep is valid at any instantaneous value of stress constants were adjusted to give an identical steady 
during a transient. Such an assumption requires state flow stress. This normalizing procedure 
that the structure changes instantaneously to that allows all the curves to be presented on a single 
appropriate to the instantaneous value of stress, figure. It is to be noted that the transition from 
This is clearly not the case during recovery creep predominantly elastic to predominantly plastic 
since a finite time is required for structural changes behaviour becomes more pronounced with increas- 
to occur. The exercise is useful, however, in that ing n. 
it enables comparisons with the cases considered In Fig. 3 the ratio of  the steady state flow stress 
later where structural changes are allowed to occur ("UTS")  and the proof  stress is plotted against 
in finite times. This permits estimates to be made strain. The ratio is highest for low values of  strain 
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Figure 3 Variation of the ratio of apparent UTS and proof 
stress with strain for the materials shown in the previous 
figure. (eEL is the elastic strain of the specimen at the 
steady state flow stress.) The dashed line corresponds to 
the analytical solution given by Equation 9. 

and stress exponent. The ratio approaches unity at 
large strains. The ratio is independent of the cross- 
head velocity and creep constant for these cases of 
constant structure. 

2.2.3. Threshold stress behaviour 
In Fig. 4 the behaviour of stress and strain with 
time is shown for a creep equation containing a 
threshold stress, ~ = a4(a - ao) n. Values of n are 
taken as 1 and 5 in this example. Behaviour is 
similar to power law creep behaviour in that the 
elastic-plastic transition is fairly abrupt, even 
when n = 1. Once again the "UTS"/PS ratio is 
close to unity for all but very small strains. 

o., / 
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o / , , , , s / /  
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Figure 4 Behaviour of materials which exhibit a flow 
equation of the form do(o - -%)  n and which do not 
work harden. 

2.3. Inf luence  of  recovery  p r o c e s s e s  

As noted in the previous section, thermal recovery 
processes occur during the testing of materials in 
the recovery creep regime. New dislocations are 
being created by the straining process and are 
annihilated by diffusion controlled recovery. 
For a three-dimensional dislocation network, 
the coarsening rate is given by the Friedel [2] 
equation: 

dX Gb 3 D 
- ( 1 2 )  

dt ~ k T  

where ~ is the mean network spacing, G the shear 
modulus and b the atomic size. At lower tempera- 
tures, dislocation pipe diffusion can contribute to 
the process and a modification can be incorporated 
in the above equation to account for this. Thus: 

(b/X) 2 is the ratio of the areas available for the two 
fluxes, pipe and lattice and Dp is the dislocation 
pipe diffusion coefficient. 

For plastic flow, the applied stress must exceed 
Gb/X, so that in this simple case the flow stress 
would decay according to: 

de _ da dX _ G2b 4 D 1+ 

dX dt X 3 k T  " 

(14) 

However, under the dynamic conditions of a hot 
tensile test, dislocations are being created each time 
a slip event occurs. For a simple cubic dislocation 
network of side length x ,  there are twelve dis- 

l A Y  / 

20 

I I , , d  0.01 vt/ l ~ 0.02 0.03 
Figure 5 Stress-time plots for materials which show con- 
current recovery during test. Curves are shown for a 
variety of initial dislocation spacings (ko). The dashed fine 
represents the constant structure case from Fig. 3 with 
n = 5 .  
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location links of  length x, each shared by four 
unit cells. This totals 3x of line length per x 3 
volume. The dislocation density p = 3Ix 2, giving a 
mean spacing Xo = 1/p1/2=x/3 t/2. A slip event 
incorporates a further length x per unit block. 
The new density is thus 4Ix 2 and the new spacing 
X = x/2. The ratio of  spacings before and after a 
slip event is thus given by ~ (3/2) 1/~. 

A computer  program was developed which 
incorporated these unit slip events and coarsening 
behaviour and matched them to the change in 
stress in the specimen as the crosshead moves. 
A given network size is input and the time taken 
to increase the stress elastically by a given amount 
is calculated. The amount of  coarsening in this 
time is then calculated from Equation 13. If  
o < Gb/X the calculation is performed repeatedly 
until a >~ Gb/X. A slip event then gives rise to a 
strain 6e = b/X which relaxes the stress elastically 
by an amount 6o=16e/(K+I/E).  A time and 
strain summation are incorporated in the program, 
so that a, e, X and t are known throughout. 

Calculations were performed for a typical fc  c 
metal at a homologous temperature T =  0.5 Tm 
(T M = 1356 K) and a crosshead velocity V =  5 • 
10-Tm sec -1, on a specimen of length l = 0.05 m 
(this gives ~ =  10-Ssec -t at steady state). An 
elastic constant E = 7 • 10aMPa was assumed 
and a machine constant K = 1 #mMPa -1. Charac- 
teristic diffusion coefficients were used as follows: 
D = 5.4 x 10 -s exp -- 18.4 TM/Tm 2 sec -1 and 
Dp = 1.88 x 10 -s e x p -  10 TM/Tm 2 sec -1. These 
values are taken from Brown and Ashby [3]. (The 
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Figure 6 Variation of the dislocation spacing with time 
for materials having different values of  h o . 

pipe diffusion coefficient is assumed to be identical 
to the grain-boundary coefficient.) Results are 
shown in Figs. 5 and 6 for various values of  initial 
dislocation spacing. Constant values of  steady 
state flow stress and dislocation density are 
achieved, independent of  the starting structure. 
The steady state spacing is defined by X = Gb/crss. 
The flow stress varied as ass oc (~)l/s, in agreement 
with predictions of  the dislocation network theory 
of  creep [4] controlled by dislocation pipe 
diffusion, which gives ~ = crSDp. 

The structural changes which accompany the 
approach towards the dynamic equilibrium con- 
dition are shown graphically in Fig. 6. For an 
initially coarse structure (Xo = 10om),  continual 
refinement occurs towards the equilibrium struc- 
ture, whereas for a very fine structure (Xo = 0.005 
/~m), there is sufficient driving force to enable 
dislocation network growth in the initial stages 
of  the test. 

It  is the variation in the paths taken towards 
the steady state condition which is important  in 
determining the proof  stress. It should be noted 
that the s t rain- t ime dependence is actually quite 
similar for all the structures so that the PS is 
mainly dictated by the instantaneous value of  the 
flow stress in Fig. 5. The ratio "UTS"/PS is plotted 
in Fig. 7 for two different T/TM values. The ratio 
is seen to vary significantly with temperature, (or, 
as a corollary, with cross-head speed at constant 
temperature). 

K,= 10 I.tm 

J i I i l l l l l l  i I I I I I t l ~  
0.001 0.01 

E ~  

Figure 7 Variation of the ratio "UTS"/PS with strain for 
materials showing concurrent recovery. The ratio depends 
on strain, temperature and h 0 . 
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2.3. 1. Recovery processes in dispersion 
hardened systems 

When a dispersion of second-phase particles is 
present, this is likely to influence both plastic slip 
and thermal recovery. The multiplication process, 
which involves the formation of dislocation loops 
between pinning points, may now be dictated by 
the presence of the second phase as well as the 
existing dislocation network. If the second-phase 
particles are widely dispersed, the overall occur- 
rence of slip events will be little different to that 
in a dispersion-free material. For, a finer dispersion, 
slip can only occur when a ~> Gb/Xp, where Xp is 
the mean inter-particle spacing. Just as there is a 
particle back stress opposing slip, there is also a 
similar restriction on network growth. The 
coarsening rate can probably be represented by an 
equation of the form of Equation 13 with the 
driving force for recovery Gb3/X, being replaced 
by Gba(1/X - 1/Xp), noting that dX/dt= 0 for 
X~>Xp. 

Incorporating these modifications into the 
previous calculation, enables predictions to be 
made for dispersion hardened systems. A further 
restriction, on the dislocation density, is imposed 
by the presence of particles. That is, the initial 
value of the dislocation spacing.probably cannot 
be greater than the interparticle spacing. 

The variation of structure is shown in Fig. 8. 
In Fig. 8a the interparticle spacing is coarse com- 
pared with the steady state spacing (~'EQ). As a 
consequence, behaviour is quite similar to particle- 
free material except for the restriction that Xo 
cannot be greater than Xp. In Fig. 8b, a much 
finer Xp is used in the calculation and the equilib- 
rium spacing is only slightly smaller than Xp. Again 

noting the restriction on X0, means that spacings 
> Xp cannot exist and also, for Xo ~ Xp, rapid 
coarsening occurs in the initial stages so that X 
rapidly approaches Xp. In this case (Xp ~ XEQ), 
the stress-time plot is very similar to that in 
Fig. 4 with n = 5. 

3. Discussion 
It is clear from the previous sections that the 
analysis of the deformation response of materials 
under the conditions of a hot tensile test at con- 
stant displacement velocity is only performed 
easily for cases where structure remains constant 
and the stress index is 1 or 2. These cases corre- 
spond closely to the deformation mechanisms in 
crystalline solids of diffusional creep and super- 
plasticity. For both mechanisms, the grain size 
dictates the diffusive fluxes and boundary sliding 
rates responsible for strain, so that in principle, 
the hot tensile test proves a useful technique for 
study if the grain size remains constant. In prac- 
tice, diffusional creep rates are often low and this 
generally precludes the use of the most commonly 
existing machines. For non-metallics which deform 
by a Newtonian viscous mechanism, or for super- 
plastic materials which can maintain a fine stable 
grain size, the technique is ideal, however. 

For recovery creep, care has to be taken in the 
interpretation of results because of the concurrent 
change in dislocation substructure throughout test. 
In the analysis given, the recovery is assumed to be 
the coarsening of the three-dimensional dislocation 
network according to the Friedel equation and the 
assumed slip geometry is an approximation to the 
real processes operating. No account is taken of 
the role of localized sub-grain walls which are 
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Figure 8 Variation of  dislocation spacing in dispersion-hardened materials. In (a) the particle spacing is m u c h  greater 
than the equilibrium spacing so that  behaviour is similar to the  particle-free material apart f rom the limitation that  
Ko ~< Xp. In (b) Xp is much  closer to KEQ so that  little change in structure is allowed. The s t r e s s - t ime  behaviour closely 
resembles the structure-insensitive behaviour o f  [rig. 4. 
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known to form in addition to the more general 
three-dimensional network and the examples are 
limited to the case where the slip event may be 
considered rapid in comparison with recovery. 
This is not always the case. Dislocation glide may, 
for example, be limited by the dragging force of a 
solute atmosphere, in which case the glide events 
will occur at a much slower rate. 

A further feature which is omitted from the 
calculations is the change in stress which occurs 
as a result of loss of specimen cross-section by the 
straining process. Such features are important 
when specimens are extended to large strains, but 
for the purposes of the present calculations, where 
the structural transients leading to the steady state 
are complete in less than 1% strain, then large 
strain features are unimportant. 

Given these limits set upon the calculations, 
several conclusions may be made with some 
confidence. 

4. Conclusions 
For a material which undergoes creep by a mech- 
anism which involves no structural changes, the 
rate of stress increase during a tensile test is 
solely dictated by the elastic deflection of the 
system and the concurrent stress relaxation by 
creep. 

Newtonian viscous solids represent such a class 
of materials and exhibit an inverse exponential 
stress increase with time, The initial slope corre- 
sponds to the elastic constants and the limiting 
value to the steady state flow stress. The proof 
stress, defined as the flow stress at some reference 
strain, is related directly to the creep constant. 
The ratio of the proof stress to the steady state 
flow stress ("UTS") is independent of the ratio: 
creep constant/crosshead speed. 

Superplastic materials represen t another class of 
materials which undergo no significant structural 
changes during flow. For these materials the flow 

stress increases with tanh t. The PS/"UTS" ratio 
is again independent of testing conditions. 

In order to predict behaviour for materials 
which deform by recovery creep, it is necessary to 
make assumptions about the mechanisms respons- 
ible for plastic slip and recovery. Accurate calcu- 
lations made using simple models of these processes, 
enable general conclusions to be made for real 
materials. 

If  the initial dislocation density is low, then the 
"UTS'/PS ratio is high and the form of the o - t  
curve is much different to the constant structure 
case. The ratio also becomes dependent of cross- 
head speed and temperature. At higher initial 
densities, the curve approaches more closely that 
for constant structure. 

If a dispersio n of second-phase particles exists, 
a limit is set upon the initial density. If  the disper- 
sion is widely spaced, compared to Gb/oss, the 
behaviour is little different to particle-free material. 
For fine dispersions, however, the limitation 
imposed by the particle spacing on the initial 
dislocation density can mean that little structural 
change may be required during test so that the 
o-t  plot corresponds closely t o  the constant 
structure case. 
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